
Ecology and Evolution. 2022;12:e8515.	 		 	 | 1 of 16
https://doi.org/10.1002/ece3.8515

www.ecolevol.org

1  |  INTRODUC TION

Environmental heterogeneity (Li & Reynolds, 1995) is regarded as 
one of the most important elements driving the emergence and 

maintenance of genetic variation within populations (Hedrick, 1986; 
Hughes et al., 2008; Levins, 1974; Ravigné et al., 2009) as it dictates 
physiological responses (Cavieres & Sabat, 2008) and can drive the 
emergence of local adaptation patterns (Nuismer & Gandon, 2008; 
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Abstract
Plant pathogen populations inhabit patchy environments with contrasting, variable 
thermal conditions. We investigated the diversity of thermal responses in popula-
tions sampled over contrasting spatiotemporal scales, to improve our understanding 
of their dynamics of adaptation to local conditions. Samples of natural populations 
of the wheat pathogen Zymoseptoria tritici were collected from sites within the Euro- 
Mediterranean	region	subject	to	a	broad	range	of	climatic	conditions.	We	tested	for	
local adaptation, by accounting for the diversity of responses at the individual and 
population levels on the basis of key thermal performance curve parameters and 
“thermotype”	(groups	of	individuals	with	similar	thermal	responses)	composition.	The	
characterization of phenotypic responses and genotypic structure revealed the fol-
lowing: (i) a high degree of individual plasticity and variation in sensitivity to tem-
perature conditions across spatiotemporal scales and populations; and (ii) geographic 
variation	in	thermal	response	among	populations,	with	major	alterations	due	to	sea-
sonal patterns over the wheat- growing season. The seasonal shifts in functional com-
position suggest that populations are locally structured by selection, contributing to 
adaptation	patterns.	Further	studies	combining	selection	experiments	and	modeling	
are required to determine how functional group selection drives population dynamics 
and adaptive potential in response to thermal heterogeneity.
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Thompson, 2005). Gathering information about the way a given 
community, species, or population copes with this environmental 
heterogeneity is crucial for the understanding and prediction of 
its distribution and responses to current and future environmental 
changes	(Austin,	2007).

The adequate capture of eco- evolutionary responses requires 
an integration of physiological variation across biological (individ-
ual, group, population, species) and spatiotemporal (seasonal, geo-
graphic) scales, given the significant implications of this variation for 
dynamics (Saloniemi, 1993; Schreiber et al., 2011; Vindenes et al., 
2008).	 It	 is	 therefore	 important	 to	 go	 beyond	 summarizing	 diver-
sity through average trait values (Bolnick et al., 2011; Violle et al., 
2012), and to account for the individual specialization of phenotypic 
responses by taking into account both phenotypic plasticity (within- 
individual differences; Pigliucci, 2001) and interindividual variation 
(between-	individual	differences;	Dall	et	al.,	2012).

The	 ecological	 concept	 of	 “reaction	 norm,”	 describing	 the	 set	
of phenotypes generated by a given genotype in different environ-
ments (Schlichting & Pigliucci, 1998), is particularly effective as a 
tool	for	accounting	for	individual	specialization	(Araújo	et	al.,	2008;	
Bolnick	et	al.,	2002).	Most	of	the	comparisons	of	the	thermal	sensi-
tivity of a given phenotypic trait across individuals under different 
environmental conditions have been conducted to date on reaction 
norm descriptors (e.g., comparisons of mean phenotypic differences 
and cardinal temperatures; Gibert et al., 1998) or degree of plasticity 
(e.g., regression for linear reaction norms or horizontal [warmer– 
colder], vertical [faster- slower], and shape [generalist– specialist] 
shifts	of	non-	linear	reaction	norms;	Izem	&	Kingsolver,	2005;	Martin	
et al., 2011; van de Pol, 2012). Such approaches have proved highly 
valuable, but may not be suitable for decomposing the overall vari-
ation or distinguishing differential responses among populations 
(Bulté	&	Blouin-	Demers,	2006)	or	including	intra-		and	interindividual	
sources	of	error	(Angilletta,	2006)	in	ANOVA	and	random	regression	
approaches (Gilchrist, 1995; Lynch & Gabriel, 1987).

One possible complementary approach to the description of vari-
ation between reaction norms involves the use of functional ecology 
to describe significant variations in the degree of individual special-
ization within populations and species (Garnier & Navas, 2012). The 
idea is to translate reaction norms by grouping individual reaction 
norms	 into	 “functional	 groups”	 (Gitay	&	Noble,	1997;	Violle	 et	 al.,	
2007). Each of these functional groups responds to the environment 
in its own way (e.g., low-  or high- performance specialists), according 
to a classification system that is not predetermined (i.e., constrained 
modes of variation). This approach accounts more effectively for 
patterns of variation in phenotypic plasticity, through the charac-
terization of three functional components: richness, evenness, and 
divergence	(Mason	et	al.,	2005).

This approach is particularly useful for deciphering variation 
in continuous reaction norms describing performance as a func-
tion of temperature (thermal performance curves or TPC; Huey & 
Stevenson, 1979), and for documenting patterns of thermal adap-
tation	to	prevailing	local	conditions	(Kawecki	&	Ebert,	2004)	across	
a	 range	 of	 environments	 (e.g.,	 Mitchell	 &	 Lampert,	 2000).	 These	

patterns play an important role in the case of microorganisms im-
pacting	ecosystems,	human	health,	and	food	security	(Fisher	et	al.,	
2012) as local adaptation to temperature conditions governs their 
geographic	 distribution,	 phenology,	 and	 abundance	 (Kraemer	 &	
Boynton,	2017).	This	 results	 in	 impacting	 the	expansion	 ranges	of	
plant	pathogens	(e.g.,	Milus	et	al.,	2009;	Robin	et	al.,	2017),	as	well	as	
the	onset	and	severity	of	disease	epidemics	(e.g.,	Ferrandino,	2012).

In	 plant	 pathogens,	 summarizing	 the	 individual	 variance	of	 ag-
gressiveness traits as population- scale averages (problematic use 
of single mean species values; Suffert & Thompson, 2018) or phe-
notyping individuals under a limited set of temperatures when con-
sidering variances (generally about three temperatures in thermal 
biology	studies;	Dell	et	al.,	2013;	Low-	Décarie	et	al.,	2017)	has	pro-
vided useful information about species distribution. This has made it 
possible to detect signatures of interindividual variation and adap-
tation	within	species	and	populations	(Milus	et	al.,	2006).	However,	
this information cannot be used to infer selection driving population 
dynamics (Lavergne et al., 2010) or to assess the relevant scales of 
functional	 diversity	 (Martiny	 et	 al.,	 2011;	Woodcock	 et	 al.,	 2006).	
Such analyses go well beyond simple comparisons of mean trait val-
ues and would require the characterization of entire TPCs and their 
variation across different scales.

This	study	explored	the	extent	of	variation	in	thermal	responses	
of a globally distributed wheat pathogen across space (geographic 
range) and time (local seasonal dynamics), and uncovered the role 
that adaptation to local environmental conditions (dynamic evolu-
tionary process) plays in generating this diversity. The analysis of 
the plasticity and variation of thermal sensitivity across individuals, 
populations, and scales was conducted in the case of Zymoseptoria 
tritici (formerly Mycosphaerella graminicola; Steinberg, 2015), the 
causal agent of one of the most economically important wheat 
diseases	(Septoria	tritici	blotch	or	STB;	Dean	et	al.,	2012;	Fones	&	
Gurr, 2015). Besides its agronomic relevance, we chose to study 
this fungal pathogen as its aggressiveness traits are empirically 
known to be temperature- sensitive (Lovell et al., 2004; Shaw, 1990) 
and	to	display	interindividual	variation	(Bernard	et	al.,	2013;	Boixel	
et	al.,	2019).	The	duality	of	 the	 reproduction	modes—	asexual	and	
sexual,	which	both	contribute	to	the	local	level	of	genetic	structure	
(Singh et al., 2021; Suffert & Sache, 2011)— makes this epidemio-
logical	model	 particularly	 interesting:	 (i)	 Sexual	 lineages	maintain	
and increase genetic diversity in pathogen populations, through 
sexual	 spores	 that	 are	 wind-	dispersed	 over	 long	 distances	 from	
wheat residues at the end of each growing season; and (ii) clonal 
lineages	 (asexual	 reproduction)	 occur	 within	 a	 single	 field	 during	
the	course	of	an	epidemic,	 through	asexual	 spores	 rain-	dispersed	
over	short	distances.	Furthermore,	Z. tritici populations present sig-
natures of adaptation to a wide range of contrasted environments 
over space (globally distributed pathogen across wheat- growing 
areas	worldwide;	Zhan	&	McDonald,	2011)	and	time	(covering	sea-
sonal changes, e.g., from late autumn to early summer in Europe; 
Suffert	et	al.,	2015).	Drawing	on	previous	local	adaptation	studies	
conducted	by	Zhan	and	McDonald	(2011)	and	Suffert	et	al.	(2015),	
we designed a sampling scheme to grasp the levels of functional 
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diversity shaping responses of Z. tritici populations to contrasted 
environments.

2  |  MATERIAL S AND METHODS

2.1  |  Sampling survey design

Samples were collected from 12 Z. tritici	 populations	 for	 the	 ex-
ploration of spatial and temporal components of thermal adap-
tation (one population being a sample of the complete group of 
individuals occupying a given wheat plot at a spatiotemporal lo-
cation)	 (Figure	1—	Step	1).	Spatial	variation	was	 investigated	for	8	
populations	 sampled	 within	 the	 Euro-	Mediterranean	 region	 (see	
detailed sampling information of the geographic scale in Table 1) 
representative of the contrasting climatic conditions over this large 
geographic	area	(covering	three—	Cfb,	Csa,	and	Dfb—	out	of	seven	
Köppen–	Geiger	climate	zones	in	which	Z. tritici is reported as a no-
table	pathogen;	Figure	S1).	One	of	these	sites	(Grignon,	France)	was	
selected for a comparison of the thermal responses of two pairs of 
winter and spring subpopulations sampled from neighboring fields, 
to capture seasonal dynamics over a wheat- growing season (i.e., 
over the course of an annual epidemic; see the 4 populations of 
the	 seasonal	 scale	 in	Table	1	 and	Figure	S2).	 These	pairs	of	 sub-
populations	were	subject	to	seasonal	variation	from	November	to	
February	 and	 from	March	 to	 June,	 respectively.	 For	 each	 of	 the	
12 populations, we collected 25– 30 isolates at random from wheat 
leaves with STB symptoms, which were placed on a wet filter paper 
in	moist	chambers	to	promote	the	extrusion	of	Z. tritici cirrhi. On 
each leaf, one cirrhus from a single pycnidium was retrieved for iso-
lation	in	pure	culture	(see	Methods	S1	for	more	details).	After	two	
subculturing for obtaining pure single- spore strains, Z. tritici spore 
suspensions	were	stored	at	−80°C	in	cryotubes,	in	a	1:1	glycerol–	
water	 mixture.	 Prior	 to	 thermal	 phenotyping,	 strains	 were	 sub-
cultured	once	just	after	their	thawing.	The	time	elapsed	between	
strain	isolation	and	phenotyping	experiments	ranged	from	1	(Euro-	
Mediterranean	 geographic	 populations)	 to	 5	 (French	 seasonal	

subpopulations) years. These conditions reduced the potential 
effects of previous environmental acclimation (for instance, via 
transgenerational plasticity or epigenetics), although such effects 
cannot	be	completely	excluded.	The	strains	were	later	confirmed	to	
be genetically unique strains based on neutral genetic markers. We 
chose to consider 25 or 30 strains (i.e., individuals) per population 
instead of the minimum level of 15 identified on the basis of a rar-
efaction	analysis	(Figure	S3)	for	estimating	the	diversity	of	thermal	
responses in Z. tritici with sufficient power, accuracy, and precision 
(Dale	&	Fortin,	2014).

2.2  |  Phenotypic variations in thermal responses

Thermal responses were phenotyped by determining the in vitro 
growth rates of the strains in liquid glucose peptone medium 
(14.3 g L−1	 dextrose,	 7.1	 g	 L−1 bactopeptone, and 1.4 g L−1 yeast 
extract)	over	a	4-	day	period	at	12	constant	temperatures	ranging	
from	6.5	to	33.5°C	(6.5,	9.5,	11.5,	14.5,	17.5,	20.0,	22.5,	24.5,	26.5,	
28.5,	30.5,	and	33.5°C;	Boixel	et	al.,	2019)	(Figure	1—	Step	2).	The	
growth rate μ of each strain at each temperature (n = 8; independ-
ent replicates) was calculated according to the standardized specific 
experimental	 framework	developed	by	Boixel	 et	 al.	 (2019),	which	
has been validated to be representative of in planta responses with 
respect	 to	 discrimination	 between	 “cold-		 and	 warm-	adapted”	 in-
dividuals. Thermal performance curves (TPCs) describing in vitro 
growth rate as a function of temperature were established by fit-
ting a quadratic function to the temperature– growth rate (or per-
formance P) estimates for each strain: P(T) = Pmax + Curv(T	−	Topt)

2 
where Curv is a shape parameter (see Table S1 for more informa-
tion on the selection process of the model leading to the highest 
accuracy of performance estimates over the mid- temperature 
range). The key properties of TPCs were estimated through thermal 
traits	commonly	used	to	compare	thermal	sensitivities	(Angilletta,	
2006;	Kingsolver,	2004).	We	have	retained	three	parameters	to	de-
scribe the shape of these TPCs and quantify their characteristics: 
first,	maximum	performance	 (Pmax), which informs on TPC height 

F I G U R E  1 Overview	of	the	methodology	for	characterizing	diversity	and	adaptive	patterns	of	thermal	responses	in	the	sampled	
Zymoseptoria tritici populations. (Step 1) Twelve populations, each composed of either 25 or 30 strains, were collected from diseased 
leaves	in	different	spatiotemporal	locations	(8	Euro-	Mediterranean	populations	collected	along	geographic	thermal	gradients	and	4	French	
seasonal	subpopulations)	with	the	corresponding	mesoclimatic	conditions	(temperature	data).	All	strains	were	(Step	2)	phenotyped	in	an	in 
vitro	growth	experiment	conducted	over	a	range	of	12	temperatures	to	capture	thermal	performance	curves	from	growth	kinetics	involving	
13	measurement	time	points	(experimental	framework	detailed	in	Boixel	et	al.,	2019);	and	(Step	3)	genotyped	for	12	neutral	microsatellite	
(SSR) markers to quantify phenotypic (PST) and genetic (FST)	differentiation.	(Step	4)	The	thermal	conditions	experienced	by	individuals	over	
the wheat- growing season were characterized for each spatiotemporal site. (Step 5) The local adaptation of individuals and populations to 
temperature was assessed by cross- comparisons of the spatiotemporal patterns of thermal responses, allele frequency, and thermal 
conditions
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(“vertical	shift”	modes	of	variation);	second,	thermal	optimum	(Topt), 
which informs on TPC position at the peak performance (“hori-
zontal	 shift”	modes	 of	 variation);	 and	 third,	 thermal	 performance	
breadth	(temperature	range	over	which	performance	exceeds	80%	
of Pmax; TPB80), which informs on the sensitivity of the response to 
temperature change around Topt	(“width	shift”	modes	of	variation).	
The	 estimates	 of	 the	 minimum	 and	maximum	 temperatures	 (Tmin 
and Tmax), which define limits of growth, were not retained for fur-
ther analysis as they fell outside the range of temperatures tested. 
Differences	in	thermal	responses	were	assessed	in	two	successive	
ways: (i) differences in the range and mean values of Pmax, Topt, and 
TPB80, assessed with parametric or nonparametric (depending on 
whether the assumptions of normality and homoskedasticity were 
verified) statistical tests for comparing variances and means; and (ii) 
typological comparisons grouping together TPCs with similar ther-
mal characteristics (functional thermal groups, referred to hereafter 
as	“thermotypes”)	based	on	a	K-	means	clustering	procedure	applied	
to the covariation of Pmax, Topt, and TPB80	 for	 all	 TPCs	 (Methods	
S2). This further analysis of TPCs in thermotypes allowed to catego-
rize individuals into five classes of horizontal position of the curve: 
“highly	cold-	adapted”	(CA+),	“cold-	adapted”	(CA),	“intermediate”	(-	),	
“warm-	adapted”	(WA),	and	“highly	warm-	adapted”	(WA+) that per-
form better at lower, low, median, high, and higher temperatures, 
respectively. When in quotation marks here and hereafter, the term 
“adapted”	refers	to	this	higher	performance	at	specific	temperature	
ranges (e.g., cold or warm environment performers) and, at this 
point, not directly to an assumption about the adaptation to the 
local	environment	in	which	they	have	been	collected.	A	comparison	
of the distribution patterns in thermotypes across populations and 
scales was conducted to detect phenotypic differentiation based 
on chi- squared tests on the observed frequency distribution of 
thermotypes.

2.3  |  Neutral genetic variation and population 
differentiation

To assess population genetic differentiation, the 350 individuals 
composing the 12 Z. tritici populations were genotyped for 12 
neutral	 genetic	markers	 on	DNA	extracted	 from	50	mg	of	 fresh	
fungal material from 5- day cultures, following SSR amplification 
and	sequencing	 in	one	multiplex	PCR	sample,	 and	allele	 size	an-
notation	 (Gautier	 et	 al.,	 2014;	Methods	 S3a)	 (Figure	 1—	Step	 3).	
Population structure was inferred with a Bayesian clustering ap-
proach	under	an	admixture	and	correlated	allele	frequency	model	
implemented in STRUCTURE (Pritchard et al., 2000). The degree 
and significance of genetic variability within a population (genetic 
diversity and allele richness) and differentiation between popu-
lations	 (pairwise	estimates	of	Weir	and	Cockerham's	F- statistic— 
FST—	and	 hierarchical	 analyses	 of	 molecular	 variance—	AMOVA)	
were evaluated with random allelic permutation procedures in 
GENETIX	(Belkhir,	2004)	and	Arlequin	(Excoffier	&	Lischer,	2010)	
software	(Methods	S3b–	d).

2.4  |  Characterization of local climates

Air	temperature	data	for	the	closest	weather	stations	within	a	mean	
30- km radius of the eight sampling sites were retrieved from ar-
chives of global historical weather and climate data, to obtain: (i) 
monthly averaged values of 1961– 1990 climate normals (Norwegian 
Meteorological	Institute,	2019);	and	(ii)	daily	data	over	the	sampling	
year	(US	National	Climatic	Data	Center	NCDC-	CDO,	2019)	(Figure	1—	
Step 4). Temperature conditions of the sampling sites (annual mean 
temperature and temperature range) and their representativity of 
climatic	 conditions	 encountered	 at	 the	 Euro-	Mediterranean	 scale	
are	summarized	in	Figure	S1.	These	variations	in	climates	have	been	
used to detect signatures of Z. tritici adaptation to its local environ-
ment by conducting an analysis of possible correlations between the 
key thermal traits Pmax, Topt, and TPB80 and the representative tem-
perature conditions of the eight sampling sites (monthly averaged 
values	of	1961–	1990	climate	normals;	Figure	S4).

2.5  |  Testing for signatures of local adaptation

Two steps were taken to detect genetic and phenotypic signatures 
of local adaptation underlying the observed differentiation between 
populations	(Figure	1—	Step	5).	First,	the	degree	of	genetic	differentia-
tion for the set of neutral markers (FST	index;	Weir	&	Cockerham,	1984)	
was compared with that for phenotypic traits (PST	 index;	 Leinonen	
et al., 2006). This made it possible to infer departures from neutral 
expectations	(Merilä	&	Crnokrak,	2001),	to	determine	whether	ther-
mal	 traits	were	under	 selection	 rather	 than	 subject	 to	genetic	drift	
(Brommer, 2011). FST- PST comparisons were conducted separately for 
seasonal (on Topt) and geographic populations (on Topt and TPB80), on 
the basis of sensitivity analyses assessing the robustness of the con-
clusions	 to	 variations	 in	 the	 approximation	of	QST by PST	 (Methods	
S3e). Second, correlations between local climate conditions and 
Z. tritici thermal sensitivity were evaluated, to detect signatures of ad-
aptation.	Pearson's	correlation	coefficients	and	their	statistical	signifi-
cance were established for all possible combinations of thermal traits 
or thermotypic compositions and for the 20 spatiotemporal thermal 
variables defining the thermal niche of a climatic site.

3  |  RESULTS

3.1  |  Marked interindividual variation in thermal 
traits at all scales

We observed a very high level of interindividual variation for the 
three thermal traits chosen to describe TPCs, within a range of 
0.17– 0.46 h−1 for Pmax (in vitro	 growth	 rate),	 9.6–	25.1°C	 for	 Topt, 
and	2.8–	30.9°C	for	TPB80,	across	all	350	strains.	Individual	thermal	
phenotypes	 are	 summarized	 in	 Figure	 2	 and	 available	 in	 Dataset	
S1. The average metapopulation- level responses in the seasonal 
and geographic data sets were remarkably similar in terms of 
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their	 quadratic	 parameters	 (Welch's	 two-	sample	 t test, p > .05): 
P(T)seasonal =	0.30	−	0.00077	× (T	−	18.3)2 vs. P(T)geographic =	0.30	−	
0.00088 × (T	−	18.2 )2.	Interindividual	variation	around	this	average	

TPC was greater for the seasonal than for the geographic scale, as 
demonstrated by the standard shift in TPC position along the x-  and 
y-	axes	 (Figure	2a)	and	 the	distinctly	wider	density	distributions	of	

F I G U R E  2 Comparisons	of	individual	variation	in	Zymoseptoria tritici thermal performance curves (TPCs) established for in vitro growth 
rate for the seasonal and geographic scales. (a) The proportion of individual variation around the average TPC for all strains (n = 350) is 
displayed	for	three	key	thermal	parameters:	maximum	performance	(Pmax), thermal optimum (Topt), and thermal performance breadth (TPB80: 
temperature	range	over	which	performance	exceeds	80%	of	Pmax). The plot displays the population- level response (black solid line), the mean 
value over the 350 individuals for each parameter (open circles and dashed horizontal line), and the spread of the parameter (movement and 
shift in TPC position along the x-  and y-	axes)	within	the	seasonal	(n = 110) and geographic (n = 240) data sets (color- coded arrows indicating 
the standard deviation around the mean). The individual variation in TPCs across strains is further broken down into the distribution of (b) 
Pmax, (c) Topt and (d) TPB80, visualized as their raw individual values (open circles), means (black thick lines), distributions (smoothed density 
curves),	and	95%	Bayesian	highest	density	intervals	(central	rectangular	boxes	enclosing	the	means)

F I G U R E  3 Analysis	of	the	functional	differences	in	thermal	performance	curves	(TPCs)	across	Zymoseptoria tritici strains. (a) Heatmap 
highlighting the intrinsic features of the 13 Z. tritici	thermotypes	(Th)	defined	on	the	HCPC	clustering	of	the	350	individual	TPCs	(see	Figure	
S5).	A	five-	level	scale	was	defined	to	summarize	the	overall	difference	in	low	and	high	values	of	Pmax (low-  vs. high- performance strains); 
Topt (cold-  vs. warm- adapted strain); and TPB80 (specialist vs. generalist strain): statistically significant (1) much lower, (2) lower, (3) no 
deviation, (4) higher, and (5) much higher value, relative to the overall mean of each parameter over the whole data set. The indicated Topt, 
TPB80, and Pmax	values	correspond	to	the	“barycenter”	of	each	thermotype.	(b,	c,	d)	Three	common	documented	shifts	in	thermal	biology	
studies	were	identified:	(b)	a	horizontal	shift	with	variations	in	the	position	of	TPCs	along	the	temperature	axis	distinguishing	“cold-	adapted”	
vs.	“warm-	adapted”	thermotypes;	a	horizontal	stretch	distinguishing	“generalist”	vs.	“specialist”	thermotypes	(c)	without	or	(d)	with	trade-	
offs between Pmax and TPB80	(TPC	axes:	P: performance; T: temperature). (e) Scatter plot highlighting a trade- off between Pmax and TPB80. 
Pmax is generally negatively related to TPB80	except	for	a	group	of	TPCs	with	both	high	TPB80 and Pmax (green points surrounded by a 
rectangle).	The	regression	is	displayed	as	a	solid	line,	with	its	95%	confidence	interval	as	a	shaded	area,	together	with	Pearson's	correlation	
coefficient R and its p- value p
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the	three	thermal	traits	at	the	seasonal	scale	(Figure	2b–	d;	Levene's	
test for homogeneity of variance: p = .01 for Pmax; p < .01 for Topt; 
and p = .02 for TPB80).	Interindividual	variation	within	populations	
was similar at both the geographic and the seasonal scales, with 
equivalent variances for Pmax (x ± 0.06 h−1	 [SD]	 on	 average),	 Topt 
(x ±	 2.59°C	 [SD]	 on	 average),	 and	 TPB80 (x ±	 5.72°C	 [SD]	 on	 av-
erage)	within	the	12	populations	(Levene's	test	for	homogeneity	of	
variance: p = .07; 0.51; and 0.13, respectively). The populations may 
therefore be considered similar in terms of their individual variances 
for thermal traits. By contrast, they were not similar in terms of the 
corresponding population means, as significant differences were de-
tected for Topt and TPB80 (p < .05) but not for Pmax (Pgeographic = 0.09; 
Pseasonal = 0.75).

3.2  |  A reading grid for functional diversity in 
individual thermal responses

TPCs were classified into thermotypes with similar thermal responses 
(Hopkins'	 statistic	 of	 0.71,	 indicating	 clustered	 data	 and	 justifying	
the	establishment	of	such	a	typology;	Methods	S2a).	The	diversity	of	
TPCs encountered in the data set was optimally partitioned into 13 
thermotypes	(Th1	to	Th13;	Figure	S5),	for	which	relative	degrees	of	
temperature specialization were described in terms of the Topt (“cold-  
vs.	warm-	adapted”),	TPB80	(“specialist	vs.	generalist”),	and	Pmax (“low-  
vs.	 high-	performer”)	 dimensions	 (Figure	 3a).	 These	 thermotypes	
illustrated	 two	 commonly	 documented	 non-	exclusive	 shifts	 in	 TPC	
along thermal gradients: a horizontal shift (low- temperature vs. high- 
temperature generalists or low- temperature vs. high- temperature 
specialists;	e.g.,	Th1	vs.	Th13	in	Figure	3b)	and	a	generalist–	specialist	
shift	without	(Th8	vs.	Th9	in	Figure	3c)	or	with	(Th1	vs.	Th3	or	Th11	
vs.	Th13	in	Figure	3d)	trade-	offs	between	Pmax and TPB80 (i.e., when 
one	cannot	increase	without	a	decrease	in	the	other).	Indeed,	regres-
sion analysis revealed a significant negative correlation between Pmax 
and TPB80	 across	 all	 individuals	 (Pearson's	 correlation	 coefficient:	
R =	−.44;	p <	 .01).	About	10%	of	individuals	did	not	follow	this	pat-
tern, with high values of both Pmax and TPB80. These high- performer 
generalists	(i.e.,	the	strains	of	Th8)	may	be	considered	as	“jack-	of-	all-	
temperatures”	as	they	perform	well	over	the	whole	range	of	tempera-
ture	covered	in	the	experiment	(Huey	&	Hertz,	1984;	Figure	3e).	Each	
cluster included strains from both geographic and seasonal popula-
tions	 (Figure	S5),	but	with	an	uneven	distribution	 (difference	 in	 the	
Jaccard distance, with a highest pairwise difference of 0.62 between 
WIN1	and	SPR1)	and	an	uneven	relative	abundance	of	the	13	ther-
motypes over the two scales. This relative abundance varied by a 
factor of up to two for the thermotypes Th5 and Th7. The various 
thermotypes were not equally distributed across the 12 populations 
either (chi- squared test for given probabilities, p < .01). This heteroge-
neous distribution was particularly pronounced for high- temperature 
generalists (see the contributions of Th12 and Th13 to the total chi- 
squared score for the comparison of distributions across seasonal and 
geographic	 populations	 in	 Figures	 S6d	 and	 S7c).	 Four	 thermotypes	
together accounted for almost half the entire data set (Th5, Th6, Th7, TA
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and Th10). The distinguishing features of these four thermotypes 
were their average behavior with respect to Topt (Th5, Th6, Th7), 
TPB80 (Th5, Th10), and Pmax (Th7, Th10).

3.3  |  Thermal phenotypic differentiation of Euro- 
Mediterranean populations

For	 population-	level	 TPCs,	 significant	 variation	 was	 observed	 for	
thermal trait means for Topt	(Kruskal–	Wallis	test,	p < .01) and TPB80 
(Kruskal–	Wallis	test,	p < .01), but not for Pmax	(Kruskal–	Wallis	test,	
p = .09), for which no population differentiation was detected 
(Table 2). Pmax values may have been constrained by the upper de-
tection thresholds for optical density (potential saturation of ab-
sorbance	measurements	for	individuals	with	“extreme	performance	
phenotypes”).	There	was	a	 two-	degree	difference	 in	Topt between 
the	 IS	 population	 and	 the	 7	 other	 populations	 (Table	 2).	 The	 IS	
population consisted of individuals performing best at higher tem-
peratures	(Figure	4a)	with	a	higher	proportion	of	high-	temperature	
generalists (Th12 and Th13; 1:3 vs. 1:15 on average for the other 
geographic	populations),	accounting	for	20.7%	of	the	 imbalance	 in	
the distribution of thermotypes between populations (see contribu-
tions	to	the	total	chi-	squared	score	in	Figure	S6d).	The	thermotypes	
performing	better	at	 lower	temperatures	 (CA+, Th1- Th2- Th3) were 
particularly	abundant	in	the	Dfb	populations	(RU-	KZ-	LV),	as	shown	
by their long- tailed distributions skewed toward lower tempera-
tures	(with	6	highlighted	individuals	in	Figure	S6a	presenting	a	Topt 
of about 10.4 ±	0.7°C,	i.e.,	about	7°C	below	the	mean	value).	The	IS	
population was characterized by a higher TPB80 for its average pop-
ulation	 response	 than	 the	other	populations,	particularly	DK	 (19.5	
vs.	12.7°C;	Table	2).	These	two	populations	had	opposite	patterns	

in terms of their respective proportions of thermal specialists and 
generalists	(Figure	4b	and	Figure	S6b).	More	broadly,	the	individuals	
with the greatest thermal breadth (G+, Th1- Th13) were less abun-
dant	in	Cfb	populations	(DK-	FR-	IR),	which	were	characterized	by	a	
higher proportion of more highly specialist individuals (S+, Th4, and 
Th9)	than	the	average	(accounting	for	10%	of	the	total	chi-	squared	
score;	Figure	S6d).

3.4  |  Seasonal phenotypic shifts within local 
populations

Spring subpopulations (SPR1 and SPR2) had a higher thermal opti-
mum	than	winter	subpopulations	(ANOVA,	p < .01), with a horizontal 
shift of Topt	 toward	higher	temperature	of	the	order	of	5°C	(SPR1)	
and	 2.3°C	 (SPR2)	 on	 average	 (Table	 2	 and	 Figure	 5a).	 In	 terms	 of	
thermotype composition, these two pairs of subpopulations differed 
principally in their relative proportions in strains that perform better 
at	warmer	temperatures	(WA+).	WA+ strains were significantly more 
abundant	 in	SPR	populations	 (Figure	5b)	 than	 in	WIN	populations,	
accounting	for	33.4%	of	the	total	chi-	squared	score	for	difference	
in	 thermotype	 distributions	 between	 WIN	 and	 SPR	 populations.	
Conversely,	WIN	populations	had	a	higher	proportion	of	individuals	
performing	better	under	colder	conditions	(CA+;	Figure	S7).

3.5  |  Signatures of local adaptation to mean annual 
temperature conditions

Neutral molecular markers revealed that all strains were geneti-
cally different. We observed no difference in the genetic structure 

F I G U R E  4 Thermal	differentiation	in	the	functional	composition	of	the	8	geographic	Zymoseptoria tritici populations. The functional 
composition of these populations is displayed according to two complementary reading grids relating to: (a) optimal temperature, with 
the relative proportions (x-	axis)	and	corresponding	number	of	individuals	(bar	values)	of	“highly	cold-	adapted”	(CA+),	“cold-	adapted”	(CA),	
“intermediate”	(-		in	white),	“warm-	adapted”	(WA),	and	“highly	warm-	adapted”	(WA+) thermotypes within each population; (b) thermal breadth 
with the relative proportions (x-	axis)	and	corresponding	number	of	individuals	(bar	values)	of	high	(S)	and	very	high	(S+) specialist (mean 
TPB80	of	10.8°C)	vs.	high	(G)	and	very	high	(G

+) generalist (mean TPB80	of	23.6°C)	thermotypes	Populations	were	sampled	in	RU	(Russia),	KZ	
(Kazakhstan),	LV	(Latvia),	DK	(Denmark),	FR	(France),	IR	(Ireland),	TN	(Tunisia),	and	IS	(Israel)
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of the 12 populations, with similar allele frequencies at each locus 
(Figures	S8,	S9	and	Table	S2),	suggesting	a	constant	mixing	of	popu-
lations through substantial continental gene flow, as underlined in 
previous studies for Z. tritici (Boeger et al., 1993). The partitioning 
of genetic variance assessed by a hierarchical analysis of molecular 
variance	(AMOVA;	Table	S3)	 indicated	that	within-	population	vari-
ation	 accounted	 for	most	 of	 the	molecular	 variance	 (99.4%),	 with	
much	lesser	amounts	among	populations	(0.6%).	In	particular,	there	

was a positive but nonsignificant correlation between genetic and 
geographic distance among populations (r = .22, p =	.08;	Figure	S10).	
Evidence	of	local	adaptation	(Figure	6)	was	detected	with	the	occur-
rence of a robust PST– FST difference for the Topt of both geographic 
and seasonal populations and for the TPB80 of geographic popula-
tions	(Figure	7	and	Figure	S11).	An	analysis	of	possible	correlations	
between these thermal traits and the temperature conditions of the 
eight sampling sites (monthly averaged values of 1961– 1990 climate 

F I G U R E  5 Individual	differentiation	in	the	thermal	optimum	of	Zymoseptoria tritici	strains	between	French	winter	and	spring	
subpopulations. (a) The population- level thermal optima (means ±	SEM)	are	presented	together	with	the	distribution	of	individual	Topt 
within	populations	(associated	raw	data	points,	boxplots,	and	split-	half	violins).	A	significant	shift	in	Topt distribution along the temperature 
axis	was	detected	between	winter	(WIN1	and	WIN2)	and	spring	(SPR1	and	SPR2)	subpopulations	sampled	from	two	local	neighboring	
fields	(annotated	1	and	2).	The	letters	indicate	the	output	of	paired	Student's	t tests with p <	.05.	(b)	Functional	thermotype	composition	
within winter and spring subpopulations is displayed as relative proportions (x-	axis)	and	corresponding	numbers	of	individuals	(bar	values)	
for	“highly	cold-	adapted”	(CA+),	“cold-	adapted”	(CA),	“intermediate”	(-		in	white),	“warm-	adapted	(WA),	and	“highly	warm-	adapted”	(WA+) 
thermotypes

F I G U R E  6 Functional	diversity	in	thermal	responses	between	the	12	Zymoseptoria tritici populations. Geographic (in bold) and seasonal 
(in	standard	text)	populations	are	situated	along:	(i)	a	scale	of	increasing	degree	of	adaptation	to	warm	conditions	(y-	axis)	discriminating	
colder-		and	warmer-	adapted	populations	(logarithm	of	the	ratio	of	the	total	of	“warm-	adapted”	individuals—	WA	and	WA+— to the total of 
“cold-	adapted”	individuals—	CA	and	CA+); (ii) a scale of thermal breadth continuum (x-	axis)	discriminating	more	specialist	and	more	generalist	
populations (logarithm of the ratio of the total number of generalist individuals— G and G+— to the total number of specialist individuals— S 
and S+)
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normals) indicated that the mean thermal optimum of geographic 
populations	 increased	 with	 mean	 annual	 temperature	 (Figure	 7a).	
The level of cold adaptation of these populations (measured as the 
ratio	of	highly	“cold-	adapted”	to	highly	“warm-	adapted”	strains)	was	
negatively and significantly correlated with the same climatic vari-
able	(Figure	7b).

4  |  DISCUSSION

4.1  |  Thermal phenotyping of Zymoseptoria tritici 
strains beyond the usual tests of “thermal sensitivity”

As	several	other	studies	on	thermal	phenotyping	 (Birgander	et	al.,	
2018; Paisley et al., 2005; Robin et al., 2017; Stefansson et al., 2013; 
Zhan	 &	 McDonald,	 2011),	 the	 high-	throughput	 method	 used	 in	
this study was a standardized in vitro approach. By characterizing 
the TPCs of Z. tritici strains collected over different spatiotempo-
ral	 scales,	 we	 were	 able	 to	 develop	 a	 fine	 description	 of	 the	 ex-
tensive	 interindividual	 variation	 in	 thermal	 sensitivity:	 maximum	
performance (Pmax), thermal optimum (Topt), and thermal perfor-
mance breadth (TPB80). This detailed characterization was made 
possible by the large range of temperatures and the high resolution 
of	 this	 experimental	 study	 (12	 temperatures,	 ranging	 from	 6.5	 to	
33.5°C),	the	extensive	sampling	strategy	(350	strains	from	12	popu-
lations	collected	within	the	Euro-	Mediterranean	region),	and	the	use	
of	 a	 dedicated	 and	 previously	 validated	 experimental	 framework	
based	on	turbidity	measurements	(Boixel	et	al.,	2019).	It	is	important	
to bear in mind that these turbidity measurements may not reflect 
the sole growth multiplication rate via yeast- like budding but more 
precisely quantify the total fungal biomass that could be affected 
by the pleomorphic nature of some strains of Z. tritici under some 
environmental stimuli (e.g., partial transition to pseudohyphae or in-
duction of a few chlamydospores, a very recently highlighted form 

at	high	temperatures;	Francisco	et	al.,	2019).	Precautions	were	taken	
to work under culture conditions limiting morphological transitions 
in	the	4-	day	time	window	of	the	experiments:	Very	few	hyphae	were	
observed	at	96	h	when	validating	the	method	(see	ESM1-	3	in	Boixel	
et	al.,	2019).	As	such,	this	framework	enables	to	detect	differences	
in thermal sensitivity between isolates (whatever the physiological 
bases that underpin these differences) and to go beyond the usual 
tests	of	“thermal	sensitivity”	based	on	two	temperatures,	which	can	
be	misleading	due	to	the	non-	linearity	of	reaction	norms	(Angilletta,	
2009).	An	advantage	of	the	in vitro approach is that it enables large- 
scale	investigations	while	alleviating	major	confounding	factors	(e.g.,	
cross- effect between host resistance and temperature adaptation; 
Pariaud	et	al.,	2009).	It	should	be	mentioned,	however,	that,	in	con-
trast to in vitro responses, in planta	processes	exhibit	narrower	tem-
perature	responses	and	shifts	to	lower	thermal	optima	(Boixel	et	al.,	
2019;	Chaloner	et	al.,	2020).	Despite	this	in planta restriction of tem-
perature niche breadth, a ranking consistency of thermal sensitivity 
between	“cold-		and	warm-	adapted”	strains,	consistent	with	the	con-
cept of phenotypic integration (Pigliucci, 2003), has been reported 
in previous studies (e.g., Paisley et al., 2005), notably in the case of 
Z. tritici	(Boixel	et	al.,	2019;	Zhan	et	al.,	2016).	This	alteration	of	ther-
mal responses related to disease in planta may be due to suboptimal 
resource conditions (e.g., interaction with the host plant, stress re-
sponses,	and	nutrient	 restriction)	compared	with	growth	 in	axenic	
culture (Chaloner et al., 2020).

4.2  |  Geographic variation in thermal response 
among Zymoseptoria tritici populations

The geographic variation of TPCs provides evidence of thermal 
adaptation to local conditions in Z. tritici, with: (i) an increase in 
the mean thermal optimum of a given population with the annual 
mean temperature of its location of origin; (ii) a particularly marked 

F I G U R E  7 Signatures	of	Zymoseptoria tritici adaptation to the mean annual temperature of the local environment in the 8 geographic 
populations. (a) Relationship between population thermal optimum (Topt) and the mean annual temperature of the sampling sites (monthly 
averaged values of 1961– 1990 climate normals, themselves positively correlated with the monthly averaged values over the sampling year; 
Pearson's	correlation	coefficient:	R = .98, p < .01). Population differentiation in Topt relative to neutral genetic differentiation is indicated 
by PST and FST	values.	(b)	Relationship	between	cold	adaptation	level,	defined	as	CA

+/WA+	(ratio	of	the	number	of	“highly	cold-	adapted”	
to	“highly	warm-	adapted”	thermotypes),	and	the	mean	annual	temperature	at	the	sampling	site.	Linear	dependence	between	these	pairs	
of	variables	is	indicated	by	the	regression	line	(solid	line	and	its	95%	confidence	interval,	shown	as	a	shaded	area),	Pearson's	correlation	
coefficient R, and its associated p- value p	(see	Figure	S1	for	a	description	of	the	three	Köppen–	Geiger	climate	zones,	Cfb,	Csa,	and	Dfb)
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adaptation	to	high	temperatures	of	the	population	sampled	in	Israel,	
consistent	with	 the	 results	obtained	 for	another	 Israeli	population	
investigated	by	Zhan	and	McDonald	 (2011);	and	 (iii)	differences	 in	
the level of specialization of individuals between populations with 
higher proportions of specialist individuals in the Cfb (climatic zone 
with	lower	annual	temperature	range)	than	in	the	Dfb	(climatic	zone	
with higher annual temperature range) populations, consistent with 
the assumption that thermal generalists are favored in more variable 
environments.	By	contrast,	over	a	smaller	geographic	scale	(France),	
using	the	same	experimental	method,	we	detected	(i)	high	levels	of	
local diversity but no structure of thermal responses between spring 
populations sampled along a gradient of increasing mean annual 
temperature; and (ii) a marked difference between post- winter pop-
ulations sampled along a gradient of increasing annual temperature 
range:	the	presence	of	thermal	generalists	in	the	population	exposed	
to	 the	 largest	 annual	 temperature	 range	 (19.9°C)	vs.	 the	complete	
absence	of	such	generalists	in	the	population	exposed	to	the	small-
est	annual	temperature	range	(11.9°C;	Boixel	et	al.,	2019).	The	phe-
notypic differentiation of thermal responses at the population level 
probably results from local short- term selection of the fittest strains 
over the course of an annual epidemic. We investigated the adapta-
tion to the location of origin of populations with respect to mesocli-
matic temperature conditions. The patterns of adaptation detected 
may have been blurred by a non- optimal descriptive resolution of the 
thermal	niche.	Indeed,	the	microenvironment	actually	perceived	by	
organisms can diverge from the surrounding macroenvironment due 
to	complex	biophysical	 filters	across	 scales	 (here	phylloclimate	vs.	
mesoclimate; Chelle, 2005). Scaling the actual climate perceived by 
Z. tritici populations down to the phylloclimate would help refining 
the definition of a thermal niche for each population (Pincebourde 
& Casas, 2019; Pincebourde & Woods, 2012). Such an approach 
might provide deeper insight into the maintenance of high levels of 
diversity and some degree of maladaptation in individual thermal re-
sponses within each population.

4.3  |  Seasonal dynamics of thermal responses in 
two local Zymoseptoria tritici populations

The interindividual variation of thermal traits was conserved across 
populations (similar variance within populations) but was gener-
ally more marked over the seasonal scale (for a similar average 
metapopulation- level response between seasonal and geographic 
scales). These findings are particularly striking because the choice 
of geographic populations made it possible to cover three contrast-
ing	 Köppen–	Geiger	 climatic	 zones	 (Figure	 S1).	 Sampling	 over	 the	
geographic scale occurred during spring, between the two time 
points investigated at the seasonal scale (i.e., post- winter and post- 
spring conditions). These seasonal samplings highlighted a marked 
seasonal shift of TPCs toward higher temperatures and changes in 
the thermotype composition of two local Z. tritici populations. This 
result is consistent with previous observations of seasonal short- 
term selection on aggressiveness traits (Suffert et al., 2015). This 

study thus reveals a two- tier thermal adaptation, with seasonal dy-
namics nested within and potentially occurring in each geographic 
local adaptation over annual epidemics. This key finding shows that 
adaptive	patterns	are	“eco-	evolutionary	snapshots”	 that	should	be	
interpreted	with	caution,	to	such	an	extent	that	certain	evolutionary	
dynamics of microbial populations can be of one type over a very 
short	 timescale	 and	 another	 type	 over	 longer	 timescales.	 Indeed,	
adaptive dynamics may differ with the timescale investigated (an-
nual or pluriannual), particularly for annual crop pathogens with 
both	sexual	and	asexual	reproduction	cycles,	such	as	Z. tritici (Suffert 
et al., 2018). Our findings could be summarized by the counterin-
tuitive statement “local seasonal adaptation is stronger but more 
fleeting	than	geographic	adaptation”	although	we	would	expect	that	
regions with lower seasonal contrasts in temperature (e.g., with mild 
winters)	will	exert	weaker	selective	pressure.	The	use	of	sequential	
temporal sampling would make it possible to capture shifts in ther-
mal adaptation over and between wheat- growing seasons and to de-
tect potential trade- offs between aggressiveness and survival over 
winter	(e.g.,	Montarry	et	al.,	2007).

4.4  |  From adaptation patterns to eco- 
evolutionary processes

Consistent	with	 previous	 studies,	 our	 findings	 highlight	 the	 exist-
ence of high levels of genetic diversity and an absence of its struc-
turing across Z. tritici populations collected from local wheat fields 
(Zhan et al., 2001) up to the regional and continental scales (Linde 
et al., 2002; Schnieder et al., 2001) or over the course of an epi-
demic	cycle	 (Chen	et	al.,	1994;	Morais	et	al.,	2019).	The	high	 level	
of gene flow suggested by this low level of genetic differentiation 
between	populations	may	partly	explain	 the	maintenance	of	some	
degree of maladaptation to local conditions (e.g., the detection of 
three	CA+individuals	 in	the	IS	population).	More	generally,	we	ob-
served almost all the “Topt-	adapted”	 thermotypes	 (CA+,	 CA,	WA,	
WA+)	 in	 each	 phenotyped	 population	 (except	 that	 CA	 individuals	
were	absent	 from	the	 IS	population	and	CA+ individuals were ab-
sent from the SPR1 population), despite the clear patterns of adap-
tation observed for Topt and the large differences in environmental 
temperatures. This maintenance of diversity suggests that Z. tritici 
is highly tolerant to thermal variations (high probability that envi-
ronmental conditions are favorable to the development of at least 
some	individuals	in	a	given	local	population).	One	possible	explana-
tion for this finding is that the substantial adaptation of populations 
to	their	environments	(e.g.,	only	“warm-	adapted”	 individuals	under	
a warm environment) is hindered by a balance between gene flow 
and	local	selection	(Ronce	&	Kirkpatrick,	2001).	It	also	raises	the	is-
sues of the occurrence of counter- selection during the interepidemic 
period	that	might	explain	how	local	populations	shift	in	thermotype	
structure to reestablish similar structures between years through 
heritability	 and	 genetic	 reassortment	 during	 sexual	 reproduction,	
which is driven by antagonistic density- dependent mechanisms 
(Lendenmann	et	al.,	2016;	Suffert	et	al.,	2019).	Further	studies	are	
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required	to	determine	the	extent	to	which	the	detected	pattern	of	
geographic adaptation is driven by the thermal conditions of the en-
vironment.	For	this,	the	potential	counteracting	effects	of	selection,	

gene flow, random genetic drift, mutation, and recombination on 
the increase or decrease in genetic variation would need to be as-
sessed	 (Hanson	et	 al.,	 2012).	 In	particular,	 the	 combination	of	 the	

F I G U R E  8 Summary	of	the	way	categorization	into	thermotypes	(functional	thermal	groups)	sheds	light	on	the	translation	of	population	
diversity	patterns	into	selection	dynamics	in	response	to	climate	conditions.	(a)	Average	population-	level	TPC	(solid	line)	concealing	a	set	
of varied individual TPCs (dashed lines); (b) breakdown of the variation in individual TPCs based on their classification into thermotypes 
and	screening	for	a	functional	significance	of	variation	at	the	individual	level	(given	example	of	three	thermotypes	within	which	individuals	
are considered functionally redundant: low- temperature specialists, intermediate generalists, and high- temperature specialists). (c) 
Categorization tackling functional redundancy at the population level (i.e., whether the thermotypes composing a population are more or 
less well differentiated within the whole functional space). The three populations presented here demonstrate the relevance of considering 
functional redundancy vs. vacant functional space when assessing emergent properties of populations such as a generalist nature at 
population level (e.g., a generalist population can be composed of specialist individuals with narrow individual TPB80 distributed over the 
functional space, resulting in broad TPB80 population coverage). (d) The translation of populations into functional groups makes it possible to 
investigate group- level selection, testing for general assumptions of adaptation to given environments (e.g., competitive advantage of low- 
temperature specialists in cold environments, generalists in variable environments, and high- temperature specialists in warm environments) 
providing insight into the potential of populations to adapt to changes in their environment (a subtle balance between diversity levels for 
intra-  and interindividual variation in thermal responses)
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high diversity of thermal responses in Z. tritici highlighted here, their 
heritability (Lendenmann et al., 2016), and the high level of local het-
erogeneity within wheat canopies (Chelle, 2005) suggests that local 
thermal	conditions	probably	exert	strong	selection	pressure	on	ther-
mal	sensitivity	(for	which	TPCs	are	probably	the	best	proxy	as	they	
may themselves be direct targets of selection; Scheiner, 1993; Via, 
1993), even in the presence of high gene flow due to long- distance 
ascospore migration (hundreds to thousands of km). The comparison 
of population genetic divergence for neutral marker loci (FST)	exem-
plified	the	extremely	high	diversity	of	Z. tritici populations, even at a 
very	local	scale	and	whatever	their	putative	admixture	and/or	local	
adaptation characteristics, in line with previous population genetic 
studies	(e.g.,	Linde	et	al.,	2002;	Morais	et	al.,	2019;	Singh	et	al.,	2021),	
including	one	on	thermal	adaptation	(Zhan	&	McDonald,	2011).	The	
FST values observed here and in other studies of Z. tritici are low 
compared with the reported mean FST in published studies of genetic 
diversity in fungi (FST = 0.2); a mean value that hides substantial dif-
ferences in dispersal abilities and/or effective population sizes be-
tween fungal pathogens with reported data from low (FST = 0.02) 
to very high (FST = 0.9) genetic differentiation (Giraud et al., 2008; 
Morjan	&	Rieseberg,	2004).

4.5  |  Functional group composition: an operational 
approach for investigating population dynamics

Our study illustrates how the functional classification of TPCs into 
thermotypes with multivariate statistical procedures can provide 
a complementary means of deciphering diversity patterns in the 
biological	 responses	 quantified	 in	 reaction	 norms.	 In	 particular,	 it	
constitutes an operational tool for assessing functional similarity at 
the individual level (i.e., whether the apparent variation observed 
in	 thermal	 parameters	 is	 functionally	 significant;	 Figure	 8a,b)	 and	
at the population level (i.e., whether the thermotypes constituting 
a population are more or less well differentiated within the whole 
functional	 space;	 Figure	 8c).	However,	 caution	will	 be	 required	 in	
the	 extension	of	 this	 approach	 to	 comparisons	 over	multiple	 data	
sets, through the development of comparable classification systems, 
taking into account the variation of the classification with the popu-
lations	sampled	by	explicitly	stating	which	ranges	of	trait	values	are	
hidden	behind	a	given	group	description	(e.g.,	affixing	levels	of	“ad-
aptation”	in	the	sense	of	higher	performance	at	given	temperature	
ranges: very low, low, high, very high). This description of popula-
tions in terms of functional groups makes it possible to move from 
a description of phenotypic patterns and shifts in population com-
position	to	an	inference	process.	This	process	may,	for	example,	be	
based on comparisons of the competitive advantage of thermotypes 
under	given	thermal	scenarios:	 for	example,	 “do	more	variable	en-
vironments	 favor	 thermal	 generalists?”	 or	 “is	 there	 a	 shift	 in	 the	
optimal range of thermal responses with mean temperature condi-
tions?”	(Figure	8d).	This	classification	into	thermotypes	enabled	here	
to go beyond a purely descriptive framework, and future investiga-
tions will need to be undertaken to tackle the physiological bases of 

these differentiations in thermal responses. The thought- provoking 
results	of	Francisco	et	al.	(2019)	could	be	used	to	test	whether	sev-
eral strains belonging to those thermotypes also correspond to 
specific or main morphotypes that would increase their tolerance 
under	some	environmental	conditions	(e.g.,	if	“warm-	adapted”	indi-
viduals	 exhibit	 higher	proportions	of	 stress-	tolerant	 growth	 forms	
such	as	chlamydospores	under	warmer	temperatures).	All	in	all,	this	
functional approach lays the foundations for future studies of the 
potential of pathogen populations to adapt to changes in their envi-
ronment, from seasonal changes in the short term, to global warming 
in	the	long	term.	In	particular,	it	will	prove	useful	in	gaining	a	fuller	
understanding of how new aggressive fungal strains may emerge 
and	expand	into	previously	unfavorable	environments	(Milus	et	al.,	
2009;	Mboup	et	al.,	2012;	Stefansson	et	al.,	2013).	This	is	a	crucial	
area of investigation that is all too often overlooked in models for 
predicting plant disease epidemics in conditions of climate change 
(West et al., 2012).

5  |  CONCLUDING REMARKS

The detailed characterization of a microbial phenotype as a profile 
rather than a mean allowed for analyses that accounted for the range 
of sensitivities of individual strains rather than solely their mean 
sensitivity. This gave insight into the high level of functional diver-
gence in the plasticity and variation of individual thermal responses 
over geographic and seasonal scales, highlighting the occurrence 
of two- tier dynamics in thermal adaptation. These findings raise 
intriguing questions regarding the mode of selection operating on 
these functional groups of individuals with similar competitive ad-
vantages	in	given	thermal	conditions.	Deciphering	the	mechanisms	
underlying this maintenance of diversity in population phenotypic 
composition	will	 prove	useful	 for	 expanding	our	understanding	of	
eco- evolutionary responses and the potential of populations, spe-
cies, and communities to adapt to environmental change.
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