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1  |  INTRODUC TION

Dispersal is an important component of many life histories. 
Knowledge of dispersal is crucial to our understanding of funda-
mental population biological processes, e.g., changes in species' 
geographic ranges (Bonte & Dahirel, 2017; Brooker et al., 2007; 
Kubisch et al., 2013) as well as size and composition of ecological 

communities (Leibold et al., 2004; Ron et al., 2018). This knowl-
edge also improves our capacity to conserve endangered species 
(McConkey et al., 2012; Musciano et al., 2020) and protect crop 
plants from weeds (Petit et al., 2013) and diseases (Fabre et al., 2012; 
Mikaberidze et al., 2016). Consequently, empirical characterization 
of dispersal has been a major research theme for over a hundred 
years (e.g., Bullock et al., 2017; Fabre et al., 2021; Heald, 1913; 
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Abstract
Dispersal is a key ecological process, but it remains difficult to measure. By recording 
numbers of dispersed individuals at different distances from the source, one acquires 
a dispersal gradient. Dispersal gradients contain information on dispersal, but they 
are influenced by the spatial extent of the source. How can we separate the two 
contributions to extract knowledge about dispersal? One could use a small, point- 
like source for which a dispersal gradient represents a dispersal kernel, which quanti-
fies the probability of an individual dispersal event from a source to a destination. 
However, the validity of this approximation cannot be established before conducting 
measurements. This represents a key challenge hindering progress in characterization 
of dispersal. To overcome it, we formulated a theory that incorporates the spatial 
extent of sources to estimate dispersal kernels from dispersal gradients. Using this 
theory, we re- analyzed published dispersal gradients for three major plant pathogens. 
We demonstrated that the three pathogens disperse over substantially shorter dis-
tances compared to conventional estimates. This method will allow the researchers 
to re- analyze a vast number of existing dispersal gradients to improve our knowledge 
about dispersal. The improved knowledge has potential to advance our understand-
ing of species' range expansions and shifts, and inform management of weeds and 
diseases in crops.
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Nathan et al., 2012). However, there is still far fewer datasets de-
scribing plant dispersal than plant demography because dispersal re-
mains difficult to measure (Bullock et al., 2017). Here, we identified 
and resolved one of the key challenges that hinders progress in em-
pirical characterization of dispersal: We incorporated the spatial ex-
tent of dispersal sources in the analysis of dispersal measurements.

One approach to measure dispersal is to use spatially localized 
sources of dispersing individuals and record dispersal gradients pro-
duced from them. These gradients do contain relevant information 
about dispersal, but they are also influenced by the spatial extent of 
the source (Cousens & Rawlinson, 2001; Ferrandino, 1996; Zadoks 
& Schein, 1979).

How can we evaluate this influence to extract more general 
knowledge about dispersal from specific dispersal gradients? This 
can be achieved using a mathematical description of dispersal with 
the help of dispersal kernels. A dispersal kernel quantifies the prob-
ability of an individual dispersal event from a source point to a des-
tination point. Technically, a dispersal kernel is a probability density 
function that depends on the location of the destination point (“dis-
persal location kernel”, Nathan et al., 2012).

To characterize dispersal, we need to estimate dispersal kernels 
based on observed dispersal gradients. An observed dispersal gra-
dient from a point source would correspond to the dispersal kernel. 
However, sources usually need to have a certain area to yield suffi-
cient number of dispersing propagules to be observed. How can we 
achieve a sufficiently small source to be considered a point? In an in-
fluential book on plant disease epidemics, Zadoks and Schein (1979) 
formulated a rule of thumb stating that a point source should have “a 
diameter smaller than 1% of the gradient length”. However, this rule 
of thumb is misleading. The size of the source should be compared 
with the characteristic distance of dispersal rather than the gradi-
ent length. However, we do not know the characteristic dispersal 
distance in advance of conducting measurements. Therefore, we 
cannot establish sound criteria for the validity of the point source 
approximation in advance of conducting measurements.

Due to the lack of clear criteria, “point” sources of various sizes 
appear in the literature: an adult tree (lichen Lobaria pulmonaria, Werth 
et al., 2006), circles of 1.6 m diameter (thistles Carduus nutans, Carduus 
acanthoides, Skarpaas & Shea, 2007), circles of 0.5 m diameter (garlic 
mustard Alliaria petiolata, Loebach & Anderson, 2018), 4 m2 squares 
(wine raspberry Rubus phoenicolasius, Japanese barberry Berberis 
thunbergii, multiflora rose Rosa multiflora, and Japanese stiltgrass 
Microstegium vimineum, Emsweller et al., 2018), and even entire agri-
cultural fields (oilseed rape Brassica napus, Devaux et al., 2007). These 
studies reported valuable dispersal gradients, but using these dispersal 
gradients as proxies for dispersal kernels may be unjustified. Spatially 
explicit modeling has been suggested (Greene & Calogeropoulos, 2002) 
to address this problem and was used in some modeling studies (Clark 
et al., 1999; Shaw et al., 2006), but it was not widely adopted in the 
literature on experimental dispersal measurements.

In this study, we devised a systematic approach to estimate dis-
persal kernels from dispersal gradients without using the point source 
approximation. For this purpose, we combined theory, analysis of 

empirical data and numerical simulations. We first formulated a theory 
that incorporates dispersal from a spatially extended source consider-
ing each point within the source area as an independent point source 
(the spatially explicit approach). We highlighted how mathematical 
properties of widely used kernel functions (exponential, Gaussian and 
power- law, Nathan et al., 2012) can inform experimental design. Then, 
we re- analyzed published empirical datasets on three major plant 
pathogens with contrasting spatial scales of dispersal and conducted 
comprehensive numerical simulations. In this way, we demonstrated 
how this approach allows the researchers to estimate dispersal ker-
nels more accurately than using the point source approximation.

2  |  DESCRIPTION

2.1  |  Theory

The probability of dispersal from a source point ps =
(

xs , ys
)

 to a 
destination point pd =

(

xd , yd
)

 is given by the dispersal location kernel 
(hereafter “dispersal kernel”). It is typically a monotonically decreas-
ing function of the distance between the points.

To estimate a dispersal kernel using a dispersal gradient pro-
duced by an area source, we consider the cumulative effect of all 
point- to- point dispersal events from the source to the destination. 
This is achieved by taking an integral over the individual points 
comprising the source to calculate their combined contribution to 
the dispersed population at a certain destination point (as in Shaw 
et al., 2006, Equation (4.6)). Similarly, the integral over all points of 
the destination area gives the total number of individuals that moved 
there from the source (as in Rimbaud et al., 2018, Equation (16)):

where S =
{

ps
}

 is the source area, D =
{

pd
}

 is the destination area, 
n0
(

ps
)

 is the density of individuals within S before dispersal, and 
�
(

ps , pd
)

 is the dispersal kernel (key variables and parameters are listed 
in Table 1). Equation (1) provides a valid description of the dispersal 
process when the overall population size is sufficiently large so that 
stochastic fluctuations in the numbers of dispersed individuals can be 
neglected. When the populations before dispersal (n0

(

ps
)

) and after 
dispersal (N1) are measured, the only unknown in Equation (1) remains 
the dispersal kernel. Equation (1) offers a way to estimate dispersal ker-
nel parameters that takes into account the spatial extent of both the 
source and the destination.

A simpler, more common but often inaccurate approach is to fit 
a function of one spatial coordinate x to dispersal gradient data. For 
example, the function

can be fitted to dispersal gradient data to estimate the scale parameter 
� of the exponential kernel (for example, Saint- Jean et al., 2004). This 

(1)N1(S,D) = ∬
D

∬
S

n0
(

ps
)

�
(

ps , pd
)

dAS dAD ,

(2)N1 = Ce
−x∕�
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    |  3KARISTO et al.

approach works for any kernel function if both the source and the des-
tination can be considered as points.

However, when the source or the destination is extended in 
space, the above approach may lead to inaccurate estimates of 
kernel parameters. In particular, extended sources modify disper-
sal gradients compared to point sources. Figure 1 illustrates such 
modifications for exponential, Gaussian and power- law kernels 
(defined in Box 1). Compare, for example, the gradients produced 
by the point source (source 1 in Figure 1a) and the area source 
(source 4 in Figure 1a). Extension of the source leads to a “flat-
tening” of the gradient for the exponential and the power- law ker-
nels, but for the Gaussian kernel, it leads to a “steepening” of the 
gradient (cf. the dashed green curve with the dashed blue curve 
in Figure 1b,d). Some studies postulated that gradients produced 
by spatially extended sources are “flatter” than gradients result-
ing from more localized sources (Cousens & Rawlinson, 2001; 
Ferrandino, 1996; Greene & Calogeropoulos, 2002; Zadoks & 
Schein, 1979). Here, we demonstrated that whether the extension 
of the source leads to a “flattening” or to a “steepening” of the 

gradient depends on the underlying kernel function. Thus, using 
a dispersal gradient from an extended source as a proxy for a dis-
persal kernel can lead to either an overestimation or an underesti-
mation of the associated kernel parameters.

Only in special cases, does the shape of the dispersal gradient 
match to the shape of the dispersal kernel even when the source is 
extended, whereby the analysis can be simplified. (i) If the source 
is extended only in the direction of the measured gradient (along 
the x- axis) and dispersal is governed by the exponential kernel, using 
Equation (2) will give a correct estimate of �, because exponential 
kernels are “memoryless” (Box 1). This is visible in Figure 1b where 
source 1 and source 2 produce the same gradients. However, this 
does not work for Gaussian and power- law kernels (Figure 1c,d). 
(ii) If the source is extended along the y- axis, perpendicular to the 
direction of measured gradient, a similar simplification is possible 
for the Gaussian kernel (Figure 1c, source 1 and 3). This is due to 
separability (Box 1) of the kernel, whereby each point source within 
the line source 3 in Figure 1a produces the same gradient along 
the x- axis. This holds for any separable kernel, but does not hold 
for non- separable kernels such as exponential or power- law kernels 
(Figure 1b,d). Analogous simplifications can be made when consider-
ing spatially extended destinations.

Insights presented above inform design and analysis of dispersal 
experiments. Gaussian and exponential kernels have been used in a 
number of studies to describe dispersal across a range of taxonomic 
groups (Table 15.1 in Nathan et al., 2012). When dispersal is gov-
erned by a memoryless (exponential) or a separable (e.g., Gaussian) 
kernel, appropriate line sources should be used to boost the power 
of the source, while maintaining the validity of the point source 
approximation to simplify the analysis. However, in most cases dis-
persal is better described by kernels that are neither memoryless 
nor separable (Nathan et al., 2012), such as the power- law kernel 
in Equation (5). In these cases, or when the kernel function is not 
known before conducting measurements, dispersal gradients should 
be analyzed using a spatially explicit approach based on Equation (1), 
as we demonstrate next.

2.2  |  Experimental design and data analysis

We re- analyzed published empirical data on dispersal gradients 
using the spatially explicit method that incorporates the spatial ex-
tent of the source and compared the outcomes with those based on 
the conventional point source approximation. We considered three 
datasets collected in field experiments investigating dispersal of 
major pathogens of crop plants: (i) the fungus Zymoseptoria tritici 
that causes septoria tritici blotch in wheat (Karisto et al., 2022); 
(ii) the fungus Puccinia striiformis that causes stripe (yellow) rust in 
wheat (Cowger et al., 2005; Sackett & Mundt, 2005); and (iii) the 
oomycete Phytophthora infestans that causes late blight in pota-
toes (Gregory, 1968). The three pathosystems represent contrast-
ing mechanisms and spatial scales of dispersal. Asexual spores of Z. 
tritici (pycnidiospores) move pre- dominantly via rain splash, while 

TA B L E  1  Key variables and parameters.

Symbol Definition

� Dispersal kernel

n0 Population density in the source area before 
dispersal [⋅ ∕m2]

N0 Population size in the source area before dispersal

N1 Population size in the destination area after 
dispersal

S Source area

D Destination area

ps, pd A source point/a destination point

Ck,e/Ck,g/Ck,p Normalization factors of exponential/Gaussian/
power- law kernels

k = 1, 2 Number of dimensions

I0 Disease intensity in the source area before 
dispersal [⋅ ∕m2]

I1 Disease intensity in the destination area after 
dispersal [⋅ ∕m2]

� Transmission parameter

� Scale parameter of exponential or Gaussian kernel 
[m]

� Shape parameter of power- law kernel

� Scale parameter of power- law kernel [m]

r Distance from the source [m]

r Mean dispersal distance [m]

rL L th percentile of the dispersal distance kernel [m]

xs/ys x- /y- coordinate of a source point [m]

xd/yd x- /y- coordinate of a destination point [m]

wx/wy Width of the source area along the x- axis/y- axis [m]

wd Width of the destination area along the y- axis [m]

bs/bd Width of the border zone outside the source area/
destination area along the y- axis [m]
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4  |    KARISTO et al.

asexual spores of P. striiformis (urediniospores) and propagules of 
P. infestans (sporangia) are mainly wind- dispersed. Spatial scales of 
the experiments varied from 100 cm to 100 m. Design of experi-
mental plots and measurements is shown in Figure 2.

In each experiment, pathogen spores were inoculated across 
inoculation areas within experimental plots to create area sources 
of dispersing populations (orange areas in Figure 2). Then, disease 
gradients (disease intensity versus distance from the source) were 
recorded outside the inoculation areas across rectangular areas sit-
uated at increasing distances from the source (we call these areas 
“measurement lines”; light brown rectangles in Figure 2). These dis-
ease gradients are called primary gradients, because they resulted 
from a single cycle of pathogen reproduction (based on latent peri-
ods and timing of infections). The cycle includes both spore disper-
sal and infection success, hence, the measured gradients reflected 
effective dispersal gradients of the pathogen population (analo-
gous to the combination of seed dispersal and establishment, Klein 
et al., 2013).

In the analysis, we incorporated the spatial extent of the source 
areas in two dimensions, but considered the measurement lines as 
thin lines perpendicular to the dispersal direction, since their length 
along the dispersal direction was short (dark brown lines in Figure 2). 
For each dataset, we chose an appropriate dispersal kernel function 
based on the original study, to allow for comparison with the results 
of the original analysis. Then we derived specific expressions for dis-
persal gradients, firstly, using the point source approximation (i.e., 
assuming a point- like source and destinations in the middle of the 
inoculation area or measurement lines; “1D” in Figure 2) and, sec-
ondly, based on the spatially explicit Equation (1). Based on these 
expressions, we estimated dispersal kernel parameters.

2.2.1  |  Septoria tritici blotch

We analyzed a subset of data collected in a larger experiment 
(Karisto et al., 2022) that characterized dispersal of a specific 

F I G U R E  1  Different extensions of the source (panel a) lead to different effects on the dispersal gradients (b– d) depending on the 
dispersal kernel. Kernel parameters are chosen so that the mean dispersal distance r = 20 m in all cases. All gradients are normalized to begin 
at one. (a) Four different sources (gray shapes): (1) a point source; (2) a line source, parallel to the gradient (colored lines) xS ∈

[

− 20m, 0m
]

; 
(3) a line source perpendicular to the gradient, ys ∈

[

− 100m, 100m
]

; (4) a rectangular area source, 
(

xs , ys
)

∈
[

− 20m, 0m
]

×
[

− 100m, 100m
]

.  
(b) With the exponential kernel (� = 10 m), sources 1 and 2 result in identical gradients. (c) With the Gaussian kernel (� = 16 m), the gradients 
are identical between sources 1 and 3 and between sources 2 and 4. (d) With the power- law kernel (� = 5, � = 20 m) all gradients are 
different.

(a) (b)

(c) (d)
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    |  5KARISTO et al.

strain of Z. tritici (ST99CH_3D7). The plots were 1.125 m wide (y
- dimension) and 4 m long (x- dimension). Inoculation areas were 
40 cm wide in x- dimension and spanned across entire plot in y
- dimension (Figure 2a). Disease intensity in the measurement lines 
was measured as the density of the fungal fruiting bodies (pyc-
nidia) on leaves using automated digital image analysis (Karisto 
et al., 2018; Stewart et al., 2016).

Using the point source approximation, we computed the disease 
intensity after dispersal at a distance r = x from the source with ex-
ponential kernel (Equation (3), k = 1) as

where I0 is the disease intensity at the source before dispersal and � is 
the transmission parameter comprising the probability of dispersal and 
the infection efficiency of fungal spores.

Next, we relaxed the point source approximation and used the 
spatially explicit approach. We computed the expected disease 
intensity after dispersal at a destination point by substituting the 
exponential kernel with k = 2 into Equation (1). We specified the 
integrals in Equation (1) according to the plot design across the in-
oculation area (source; wx = 0.4 m × wy = 1.125 m) and along the 
measurement lines considering them as thin lines in y- dimension 
(destination; wd = wy − 2bd = 0.875 m, where bd = 0.125 m is the 
width of the border excluded from measurements at each end, along 
y- dimension). Finally, dividing the total intensity by the length of the 

(6)I1(x) =
I0�

2�
e−∣x∣∕� ,

BOX 1 Dispersal kernels and their special properties.

Exponential kernel is defined as

where � is the scale parameter, k ∈ {1, 2} is the number of dimensions, r = r
(

ps , pd
)

 is the Euclidean distance from the source point 
ps =

(

xs , ys
)

 to the destination point pd =
(

xd , yd
)

 (in one dimension ys = yd = 0), and Ck,e is the normalization factor: C1,e = 1∕(2�), 
C2,e = 1∕

(

2��2
)

. The mean dispersal distance for k = 2 is re = 2�.

Gaussian kernel is defined as

where � is the scale parameter, C1,g = 1∕
√

2��2, and C2,g = 1∕
(

2��2
)

. The mean dispersal distance for k = 2 is rg = �
√

� ∕2.

Power- law kernel is defined here as

where � is the shape parameter, � is the scale parameter, C1,p = (� − 1)��−1, C2,p = (� − 2)(� − 1)��−2 ∕(2�). The mean dispersal distance for 
k = 2 is rp = 2�∕(� − 3) for 𝛾 > 3 and rp = ∞ for � ≤ 3.

Memorylessness. Exponential kernels are memoryless: when we set any point in the distribution as a starting point, the tail of the 
distribution will have the same shape as the entire distribution, i.e., the “past” does not affect the “future” probabilities:

for any starting points x1, x2 (see also Ahmad & Alwasel, 1999). Thanks to this property, exponential kernels are unambiguously character-
ized by the half- distance �ln(2). For any r- value in Equation (3), moving �ln(2) units further to r + �ln(2) will decrease the density by half.
Separability. A function is called separable when it can be expressed as a product of other functions that depend on only one indepen-
dent variable each: the variables can be separated from each other, e.g., f(x, y) = fx(x)fy (y). Separable functions are often considered in 
connection with separable differential equations (Ahmad & Ambrosetti, 2015). When a dispersal kernel is separable, the shape of the 
kernel along the x- axis does not depend on the y- coordinate, i.e., dispersal probabilities in x-  and y- dimensions are independent random 
variables.

(3)�e(r) = Ck,ee
−r∕� ,

(4)�g(r) = Ck,ge
−r2∕2�2 ,

(5)�p(r) = Ck,p(�+ r)−� ,

f
(

x1
)

− f
(

x1 + y
)

f
(

x1
) =

f
(

x2
)

− f
(

x2 + y
)

f
(

x2
) ,
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6  |    KARISTO et al.

measurement line (wd) gives the average intensity across the mea-
surement line at a distance xd as

The integrations above incorporate the contribution of each 
source point 

(

xs , ys
)

 to disease intensity at the destination point (xd, 
yd). In the integrals in Equation (7), we set xs = 0 at the center of the 
inoculation area and ys = 0, yd = 0 at the edge of the plot.

We fitted the one- dimensional model Equation (6) and the two- 
dimensional model Equation (7) to observed dispersal gradients to 
estimate the scale parameter �.

2.2.2  |  Stripe rust

We analyzed a subset of data that corresponds to Hermiston 2002 
and Madras 2002 trials (Cowger et al., 2005; Sackett & Mundt, 2005). 
Asexual spores of P. striiformis (urediniospores) were inoculated onto 
1.53 m × 1.53 m squares within 6.1 m- wide plots that were at least 
100 m long in the downwind direction (Cowger et al., 2005). Disease 
severity in the measurement lines was measured visually as the 
percentage of leaf area covered by lesions (“disease severity” is a 

specific form of the more general term “disease intensity”, Madden 
et al., 2007).

We used the modified power- law kernel

as defined by Equation (10) of Mikaberidze et al. (2016), be-
cause it describes disease gradients of stripe rust better than ex-
ponential or Gaussian kernels. Here, r is the distance between 
the source point and the destination point; Ck,p1 is the normal-
ization factor, k = 1, 2 is the number of dimensions. At k = 1, 
C1,p1 = 2��−1Γ(� ∕2)∕

�

√

�Γ((� − 1)∕2)
�

, where Γ( ⋅ ) is the gamma- 
function; and at k = 2, C2,p1 = (� − 2)∕

(

2��2−�
)

.
The kernel Equation (8) has the same basic properties as the 

modified power- law kernel in Equation (5) (fat- tailed, power- law). 
This form was used by Mikaberidze et al. (2016) to analyze the same 
data and we decided to use the same form to enable an easier com-
parison. Similarly to Equation (5), � is the shape parameter, � is the 
scale parameter (set to λ = 0.762 m as in Mikaberidze et al., 2016).

Using Equation (8) and point source approximation (r = x, k = 1 ), 
we computed the disease severity after dispersal at a distance x 
from the source

Then, we lifted the point source approximation and we com-
puted the average disease severity in a measurement line at a dis-
tance xd from the middle of the source by substituting the kernel 
Equation (8) into Equation (1) and specifying the integrals according 
to the experimental design as

where wx = wy = 1.53 m is the side length of the square source, 
bs = 2.285 m is the border area between the inoculation area and 
the edge of the plot, wd = 3 m is the length of each measurement line  
(y- dimension), bd = 1.525 m is the width of the border excluded from 
measurements at each end (Figure 2b).

Following Sackett and Mundt (2005), and Mikaberidze et al. (2016), 
we performed a natural logarithmic transformation of observed dis-
ease gradients to avoid a disproportionate emphasis on the few large 
values at the beginning of the gradient, and excluded zeros from the 
log- transformed data. Accordingly, we log- transformed both the 
one- dimensional model Equation (9) and the two- dimensional model 
Equation (10). We then fitted both functions to log- transformed dis-
ease gradients to estimate the shape parameter �.

2.2.3  |  Potato late blight

We analyzed a subset of data on dispersal of P. infestans 
(Gregory, 1968, Table III, unsprayed experiment). P. infestans 

(7)

I1
�

xd
�

=
I0�

wd2��
2 ∫

bd+wd

yd=bd
∫
wy

ys=0
∫
wx∕2

xs=−wx∕2

e−
√

(xd−xs)
2
+(yd−ys)

2
∕�dxs dys dyd ,

(8)�p1(r) = Ck,p1

(

�2+ r2
)−�∕2

.

(9)I1(x) = C1,p1I0�
(

�2+x2
)−�∕2

.

(10)

I1
(

xd
)

=
I0�

wd

C2,p1 ∫
bd+wd

yd=bd
∫
bs+wx

ys=bs
∫
wx

xs=0

(

�2+
(

xd−xs
)2

+
(

yd−ys
)2
)−�∕2

dxs dys dyd ,

F I G U R E  2  Designs of the experimental plots. (a) Septoria tritici 
blotch experiment (Karisto et al., 2022); (b) yellow rust experiment 
(Cowger et al., 2005; Sackett & Mundt, 2005); (c) potato late 
blight experiment (Gregory, 1968). The two- dimensional (2D) view 
corresponds to the spatially explicit approach; the one- dimensional 
(1D) view corresponds to the point source approximation. 
Inoculation areas are shown in orange, measurement lines in light 
brown and the approximated thin lines in dark brown.

(a)

(b)

(c)
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zoospores were inoculated across a strip in the middle of each ex-
perimental plot (orange area in Figure 2c). Plots were 8.5 m wide and 
over 60 m long. Rows of potato plants were oriented along the plot 
length (along the x- axis). Disease severity was measured as numbers 
of late blight lesions counted visually on all leaves belonging to two 
adjacent potato stems chosen in every row at several distances from 
the source: from 1 m up to 30 m.

When describing the experiment, Gregory (1968) did not re-
port the widths of the inoculation areas and the measurement 
lines (along the x- axis), but only stated that they spanned five 
plants and two plants along a row, respectively. The paper also 
did not specify the location of the origin from which the distances 
between the source and the measurement locations were deter-
mined. We inferred these details based on reasonable assump-
tions. First, we assumed the typical distance between plants along 
the row to be 0.38 m (15 inches). Based on that, we computed the 
width of the inoculation area as 1.9 m and the width of a mea-
surement line as 0.76 m. Second, we assumed that the distances 
were measured from the edge of the inoculation area (Figure 2c), 
as otherwise the first measurement line would overlap with the 
inoculation area.

The power- law function

used to describe disease gradients by Gregory (1968) is not a ker-
nel. Nevertheless, we used it in the analysis as if it were a kernel 
so that the results are comparable with the estimates obtained by 
Gregory (1968).

Under point source approximation, we used Equation (11) to 
compute the disease severity after dispersal at a distance r = x from 
the edge of the source

Next, we used the spatially explicit approach and computed the 
disease severity (averaged over the length of a measurement line) 
at a distance xd from the source by substituting Equation (11) into 
Equation (1) and specifying the integrals according to the experi-
mental design

where wx = 1.9 m and wy = 8.5 m are the dimensions of the inoculation 
area. Both the inoculation area and the measurement lines spanned 
the entire width of the plot in y- dimension (wy = wd). Since the function 
in Equation (11) cannot be normalized, there is no normalization factor 
in Equation (12) and Equation (13). For this reason, the prefactor I0� in 
Equation (12) and Equation (13) has no biological relevance.

We performed the natural logarithmic transformation of ob-
served disease gradients and excluded zeros from transformed 
data. Accordingly, we log- transformed both the one- dimensional 

Equation (12) and two- dimensional Equation (13). Then, we fitted 
the two functions to observed disease gradients to estimate the 
shape parameter �.

2.2.4  |  Data analysis

The fitting was implemented in Python 3.7 using packages numpy (v. 
1.17.3, Harris et al., 2020), scipy (v. 1.3.1, Virtanen et al., 2020) and 
lmfit (v. 1.0.1, Newville et al., 2014). We used least squares optimi-
zation via the function ‘Model.fit’ of the package lmfit (Levenberg– 
Marquardt or Trust Region Reflective algorithm, function scipy.
optimize.least_squares). The same method was used in all analyses 
of the experimental data and in numerical simulations. Brute force 
search was used with experimental data to achieve reasonable start-
ing values for the least squares optimization.

We used the estimates of the kernel parameters for septoria tritici 
blotch and stripe rust to quantify the characteristic scales of disper-
sal by computing medians (r50) and 90th percentiles (r90) of dispersal 
distance kernels (Nathan et al., 2012). We computed the two percen-
tiles numerically by solving the equation 2� ∫ rL

0
r� i(r)dr = 0.01L with 

respect to rL at L = 50, 90. Here, � i(r) is the dispersal kernel function, 
where i = e, p1; e stands for the exponential kernel (Equation (3) at 
k = 2) and p1 stands for the modified power- law kernel (Equation (8) 
at k = 2).

3  |  RESULTS

3.1  |  Results of data analysis

In all three cases, the spatially explicit estimation (2D- estimation) 
resulted in steeper dispersal kernels and shorter dispersal distances 
compared to the point source approximation (1D- estimation), be-
cause the estimated kernel parameters differed between 2D-  and 
1D- estimation (Table 2, Appendix S1: Figure S1.1). �- estimate for 
septoria tritici blotch was lower by about 12% in 2D- estimation 
compared to 1D- estimation; �- estimate for stripe rust was higher by 
about 10%; �- estimate for potato late blight was higher by more than 
30%.

For septoria tritici blotch and stripe rust, we further investigated 
how the differences in kernel parameter estimates affect the char-
acteristic spatial scales of dispersal, quantified by the 50th and 90th 
percentiles of dispersal distance kernels, r50 and r90. For septoria trit-
ici blotch, a moderate reduction in the �- estimate in 2D- estimation 
compared to 1D- estimation translated into a similarly moderate de-
crease in r50 and r90 (Table 2). In contrast, for stripe rust, a modest 
increase in the �- estimate in 2D-  versus 1D- estimation translated 
into a dramatic decrease in the spatial scales of dispersal (Table 2). 
In particular, for Madras dataset, 2D- estimation resulted in a nearly 
two- fold reduction of r50 and a massive, almost seven- fold reduction 
of r90. Although we could not conduct this analysis with the power- 
law function defined by Equation (11) since it cannot be normalized, 

(11)�p2(r) = r−�

(12)I1(x) = I0�x
−�

(13)

I1
(

xd
)

=
I0�

wd
∫
wd

yd=0
∫
wy

ys=0
∫
0

xs=−wx

(√

(

xd−xs
)2

+
(

yd−ys
)2

)−�

dxs dys dyd ,
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based on the substantial difference in the �- estimates between 
2D-  and 1D- estimation, we expect a comparably strong reduction 
in estimated characteristic spatial scales of dispersal for potato late 
blight too. Thus, the three plant pathogens disperse over substan-
tially shorter distances according to more realistic 2D- estimation 
compared to conventional 1D- estimates.

3.2  |  Results of numerical simulations

Are the 2D- estimates acquired above more accurate (i.e., closer to 
the true values) than 1D- estimates? This is plausible, because the 
2D- estimation describes dispersal from spatially extended sources 
more realistically. However, we cannot answer this question defini-
tively based on the analysis of experimental data alone, because we 
do not know the true values of dispersal kernel parameters. Here, 
we addressed this question via numerical simulations. We first simu-
lated the dispersal process according to exponential, Gaussian and 
power- law kernels with pre- defined parameters. Then, we used 
both methods to estimate the kernel parameters and compared the 
two methods in terms of their estimation accuracy across a range 
of biologically plausible scenarios. Here, we summarize the key 
outcomes of these simulations, but describe them in more detail in 
Appendices A, B and C.

We started by conducting idealized simulations (Appendix S2): 
we assumed that sampling locations were points without spatial 
extent and that measured values accurately reflected true values. 
Here, the 2D- estimation provided perfectly accurate estimates, 
while 1D- estimation exhibited substantial errors. We analyzed how 
the errors in 1D- estimates depend on the parameters of kernel func-
tions and source sizes. We found that the errors become smaller for 
organisms with longer mean dispersal distances and when using 
smaller source sizes.

Next, we wanted to understand the origin of errors in 1D- 
estimates. We considered different parts of the extended source 
area separately and analyzed how they ‘distort’ the parameter esti-
mates when assuming a point source (Appendix S3). We found that 
different parts of the source generate different errors, depending 
on the kernel type and the location of the virtual point source (used 

in 1D- estimate). For power- law kernels, the errors in 1D- estimation 
were particularly difficult to minimize even when we decreased the 
source size. None of the three ways we attempted to improve the ac-
curacy of 1D- estimation led to satisfactory outcomes for power- law 
kernels (denser sampling, sampling further away from the source, 
or estimation of both �-  and �- parameters of the kernel). Hence, the 
1D- estimation has serious limitations for parameter estimation from 
extended sources while the 2D- estimation is accurate.

Finally, we investigated both 1D-  and 2D- estimation in more 
realistic simulations where the design mimics more closely experi-
mental design (Appendix S4). We found that sparser sampling and 
extension of measurement lines reduced the accuracy of both 1D-  
and 2D- estimates. However, with sufficiently dense sampling the 
2D- estimates recovered their accuracy while the 1D- estimates re-
tained substantial errors in all cases.

Thus, we demonstrated that the effect of extended sources 
on the accuracy of the point source approximation is complex: 
the magnitude and even the direction of the error induced by the 
point source approximation depend in a non- trivial manner on the 
type of the kernel, the scale of dispersal, the spatial configuration 
of the source and the properties of sampling. Thus, our outcomes 
discourage the use of the conventional point source approxima-
tion, as it provides accurate estimates only in exceptional cases 
that are hard to identify. Instead, our outcomes strongly support 
the use the spatially explicit method for estimating dispersal ker-
nel parameters.

4  |  DISCUSSION

We devised a theoretical framework to estimate dispersal kernels 
from empirical dispersal gradients by incorporating the spatial ex-
tent of dispersal sources. We re- analyzed existing dispersal gradi-
ents for three major plant pathogens and found that this spatially 
explicit approach provides considerably different estimates of 
dispersal kernels compared to the conventional point source ap-
proximation. Further, we demonstrated using numerical simulations 
that the spatially explicit approach yields more accurate estimates 
across a wide range of biologically plausible scenarios. Combining 

Septoria tritici 
blotch

Stripe rust, 
Madras

Stripe rust, 
Hermiston

Late 
blight

1D Parameter � = 0.151 m � = 2.4 � = 2.5 � = 1.4

r50, m 0.25 4.2 3.0 – 

r90, m 0.58 241 76 – 

2D Parameter � = 0.135 m � = 2.6 � = 2.7 � = 1.9

r50, m 0.23 2.3 1.9 – 

r90, m 0.52 35.3 20.4 – 

Note: The parameter � appears in the exponent of power- law kernels, but the parameter � enters 
the denominator of the exponent in the exponential kernel. Hence, the parameter difference has 
the opposite effect on characteristic dispersal distances in septoria tritici blotch compared to the 
two other systems.

TA B L E  2  Comparison of kernel 
parameter estimates and associated 
percentiles of dispersal distance kernels 
between one-  and two- dimensional 
models (1D and 2D, respectively). 
The 1D- estimates here correspond to 
the estimates presented in the earlier 
publications.
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these two lines of evidence, we conclude that the three organisms 
disperse on average over substantially shorter distances compared 
to estimates from conventional modeling.

Similar spatially explicit approaches have been used in modeling 
studies to investigate dispersal in plants (Clark et al., 1999; Shaw 
et al., 2006) and plant pathogens (Rimbaud et al., 2018). However, 
such approaches are not adopted in the literature on empirical char-
acterization of dispersal (e.g., not used in Werth et al., 2006; Skarpaas 
& Shea, 2007; Loebach & Anderson, 2018; Emsweller et al., 2018; 
Devaux et al., 2007). Also, Bullock et al. (2017) excluded dispersal 
gradients produced by line and area sources from their analysis, be-
cause these gradients could not be compared to dispersal gradients 
from point sources. However, dispersal kernels estimated using the 
spatially explicit approach presented here enable such comparisons, 
because the estimates are independent of specific experimental de-
sign. Hence, adoption of this methodology would provide a unifying 
framework to extract biological knowledge from experimental data 
on dispersal.

We demonstrated how to use this theory to extract more 
knowledge from existing dispersal datasets. The improved esti-
mates can potentially enhance our understanding of ecological 
dynamics. For example, yellow rust pathogen P. striiformis has re-
cently expanded its geographic range by adapting to higher tem-
peratures (Milus et al., 2009). Here, we acquired more accurate 
estimates of P. striiformis dispersal kernels using the spatially ex-
plicit approach, whereby the characteristic dispersal distance r90 
is about seven times shorter compared to conventional estimates 
(Table 1). Thus, our results (combined with knowledge about other 
relevant biophysical processes) could enable a more accurate pre-
diction of further range expansion of P. striiformis populations, 
which is likely to be slower than expected based on conventional 
estimates.

Similarly, using this method, a large proportion of other pub-
lished dispersal gradients (e.g., Devaux et al., 2007; Emsweller 
et al., 2018; Loebach & Anderson, 2018; Skarpaas & Shea, 2007; 
Werth et al., 2006) can be re- analyzed to improve our knowledge 
about spatial scales of dispersal. This could improve our capacity 
to predict shifts and expansions of species' geographic ranges, and 
sizes and compositions of plant communities. We demonstrated that 
depending on several factors (e.g., the functional form of the kernel 
and the spatial configuration of source/measurement locations), the 
improved estimates based on spatially explicit approach can result 
either in shorter or longer dispersal distances compared to con-
ventional estimates. Accordingly, an improved prediction of rate of 
range expansions or shifts and sizes or compositions of ecological 
communities can go in either direction, which highlights the impor-
tance of acquiring more accurate estimates of dispersal.

We assumed isotropic dispersal in data analysis and sim-
ulations. However, anisotropic dispersal is common in nature 
(Soubeyrand et al., 2007) and the model can be extended to in-
corporate it. In this extended model, the probability of dispersal 
from a source point to a destination point will depend not only on 
the distance between the points, as in our case, but also on the 

direction from the source to the destination. Parameters of aniso-
tropic dispersal kernels can then be estimated from measurements 
of dispersal gradients with the spatially explicit consideration of 
the source. Empirical data we analyzed characterized populations 
of passively dispersing plant pathogens. The methodology is appli-
cable to plant and plant pathogen systems that have passive dis-
persal, but may not be applicable to characterize active dispersal, 
e.g., of vector- borne plant viruses.

Based on the outcomes of our idealized simulations, it is tempt-
ing to propose simple rules of thumb about when the point source 
approximation provides reasonably accurate estimates of dispersal 
kernel parameters. This appears to be the case, for example, when 
the sources are sufficiently small and the spatial scale of dispersal 
is sufficiently large (Figure S2.2). However, in these idealized simu-
lations, we neglected the spatial extent of measurement areas and 
limitations in the amount of sampling within these areas. When we 
considered these features in more realistic simulations, the out-
comes revealed a non- trivial influence of several factors (such as the 
functional form of the kernel, the spatial configuration of the source 
and the measurement locations as well as sample sizes) on the esti-
mation accuracy. As a result, we are not able to provide simple rules 
of thumb regarding the validity of the point source approximation.

Instead, based on our results we suggest the following best 
practices to design future dispersal experiments. First, a proposed 
experiment should be simulated numerically over a range of plausi-
ble parameter values to decide whether the point source approxima-
tion is valid or the spatially explicit modeling should be used in the 
analysis. Second, aspects of experimental design can be optimized 
by doing further simulations in order to minimize costs while max-
imizing the estimation accuracy. These aspects include the size of 
the source, the spatial configuration of measurement areas (such as 
their sizes, shapes, and measurement distances), and sample sizes. 
In conclusion, we demonstrated how spatially explicit modeling can 
improve the analysis of existing dispersal data and optimize design of 
future dispersal experiments.
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